Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 38
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Med Chem ; 2024 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-38712838

RESUMO

Multiple sclerosis (MS) is a chronic disease with an underlying pathology characterized by inflammation-driven neuronal loss, axonal injury, and demyelination. Bruton's tyrosine kinase (BTK), a nonreceptor tyrosine kinase and member of the TEC family of kinases, is involved in the regulation, migration, and functional activation of B cells and myeloid cells in the periphery and the central nervous system (CNS), cell types which are deemed central to the pathology contributing to disease progression in MS patients. Herein, we describe the discovery of BIIB129 (25), a structurally distinct and brain-penetrant targeted covalent inhibitor (TCI) of BTK with an unprecedented binding mode responsible for its high kinome selectivity. BIIB129 (25) demonstrated efficacy in disease-relevant preclinical in vivo models of B cell proliferation in the CNS, exhibits a favorable safety profile suitable for clinical development as an immunomodulating therapy for MS, and has a low projected total human daily dose.

2.
Cell Chem Biol ; 28(2): 148-157.e7, 2021 02 18.
Artigo em Inglês | MEDLINE | ID: mdl-32997975

RESUMO

Utilizing a phenotypic screen, we identified chemical matter that increased astrocytic apoE secretion in vitro. We designed a clickable photoaffinity probe based on a pyrrolidine lead compound and carried out probe-based quantitative chemical proteomics in human astrocytoma CCF-STTG1 cells to identify liver x receptor ß (LXRß) as the target. Binding of the small molecule ligand stabilized LXRß, as shown by cellular thermal shift assay (CETSA). In addition, we identified a probe-modified peptide by mass spectrometry and proposed a model where the photoaffinity probe is bound in the ligand-binding pocket of LXRß. Taken together, our findings demonstrated that the lead chemical matter bound directly to LXRß, and our results highlight the power of chemical proteomic approaches to identify the target of a phenotypic screening hit. Additionally, the LXR photoaffinity probe and lead compound described herein may serve as valuable tools to further evaluate the LXR pathway.


Assuntos
Apolipoproteínas E/metabolismo , Astrócitos/metabolismo , Receptores X do Fígado/metabolismo , Astrócitos/citologia , Linhagem Celular , Humanos , Ligantes , Ligação Proteica , Proteômica
3.
J Med Chem ; 63(19): 10652-10704, 2020 10 08.
Artigo em Inglês | MEDLINE | ID: mdl-32338902

RESUMO

New drugs introduced to the market every year represent privileged structures for particular biological targets. These new chemical entities (NCEs) provide insight into molecular recognition while serving as leads for designing future new drugs. This annual review describes the most likely process-scale synthetic approaches to 39 new chemical entities approved for the first time globally in 2018.


Assuntos
Aprovação de Drogas , Preparações Farmacêuticas/química , Descoberta de Drogas , História do Século XXI , Estrutura Molecular
4.
J Org Chem ; 85(8): 5718-5723, 2020 04 17.
Artigo em Inglês | MEDLINE | ID: mdl-32208719

RESUMO

A mild, direct C-H arylation of 1-substituted tetrazoles to 5-aryltetrazoles is developed using a Pd/Cu cocatalytic system with readily available aryl bromides. The methodology avoids late-stage usage of azides and tolerates a wide range of functionalities.

5.
Angew Chem Int Ed Engl ; 58(51): 18405-18409, 2019 12 16.
Artigo em Inglês | MEDLINE | ID: mdl-31591755

RESUMO

Cyclobutane rings are important in medicinal chemistry, yet few enantioselective methods exist to access this scaffold. In particular, cyclobutylboronates are receiving increasing attention in the literature due to the synthetic versatility of alkylboronic esters and the increasing role of boronic acids in drug discovery. Herein, a conjugate borylation of α-alkyl,ß-aryl/alkyl cyclobutenones is reported leading to the first synthesis of enantioenriched tertiary cyclobutylboronates. Cyclobutanones with two stereogenic centers are obtained in good to high yield, with high enantioselectivity and diastereoselectivity. Vital to this advance are the development of a novel approach to α,ß unsymmetrically disubstituted cyclobutenone substrates and the use of a high-throughput chiral ligand screening platform. The synthetic utility of both the boronic ester and ketone functionalities is displayed, with remarkable chemoselectivity for either group being possible in this small ring scaffold.

6.
ACS Med Chem Lett ; 10(8): 1104-1109, 2019 Aug 08.
Artigo em Inglês | MEDLINE | ID: mdl-31413793

RESUMO

Many pharmaceutical companies have invested millions of dollars in establishing internal chemical stores to provide reliable access to large numbers of building blocks (BB) for the synthesis of new molecules, especially for the timely design and execution of parallel (library) synthesis. Recognizing budget and logistical limitations, we required a more economically scalable process to provide diverse BB. We disclose a novel business partnership that achieves the goals of just-in-time, economical access to commercial BB that increases chemical space coverage and accelerates the synthesis of new drug candidates. We believe that this model can be of benefit to companies of all sizes that are engaged in drug discovery by reducing cost, increasing diversity of analog molecules in a time-conscious manner, and reducing BB inventory. More efficient use of BB by customers may allow commercial vendors to devote a greater portion of their resources to preparing novel BB that increase chemical diversity as opposed to resynthesizing out-of-stock compounds that are inaccessible within company compound collections.

7.
J Med Chem ; 62(16): 7340-7382, 2019 08 22.
Artigo em Inglês | MEDLINE | ID: mdl-30939001

RESUMO

New drugs introduced to the market every year represent privileged structures for particular biological targets. These new chemical entities (NCEs) provide insight into molecular recognition while serving as leads for designing future new drugs. This annual review describes the most likely process-scale synthetic approaches to 31 new chemical entities approved for the first time globally in 2017.


Assuntos
Aprovação de Drogas , Desenho de Fármacos , Modelos Químicos , Preparações Farmacêuticas/síntese química , Anti-Infecciosos/síntese química , Anti-Infecciosos/química , Antineoplásicos/síntese química , Antineoplásicos/química , Fármacos Gastrointestinais/síntese química , Fármacos Gastrointestinais/química , Fármacos Hematológicos/síntese química , Fármacos Hematológicos/química , Estrutura Molecular , Soluções Oftálmicas/síntese química , Soluções Oftálmicas/química , Preparações Farmacêuticas/química , Preparações Farmacêuticas/classificação
8.
J Med Chem ; 61(24): 11384-11397, 2018 12 27.
Artigo em Inglês | MEDLINE | ID: mdl-30431269

RESUMO

The discovery of D1 subtype-selective agonists with drug-like properties has been an enduring challenge for the greater part of 40 years. All known D1-selective agonists are catecholamines that bring about receptor desensitization and undergo rapid metabolism, thus limiting their utility as a therapeutic for chronic illness such as schizophrenia and Parkinson's disease. Our high-throughput screening efforts on D1 yielded a single non-catecholamine hit PF-4211 (6) that was developed into a series of potent D1 receptor agonist leads with high oral bioavailability and CNS penetration. An important structural feature of this series is the locked biaryl ring system resulting in atropisomerism. Disclosed herein is a summary of our hit-to-lead efforts on this series of D1 activators culminating in the discovery of atropisomer 31 (PF-06256142), a potent and selective orthosteric agonist of the D1 receptor that has reduced receptor desensitization relative to dopamine and other catechol-containing agonists.


Assuntos
Agonistas de Dopamina/química , Agonistas de Dopamina/farmacologia , Receptores de Dopamina D1/agonistas , Animais , Disponibilidade Biológica , Células CHO , Cricetulus , AMP Cíclico/metabolismo , Cães , Agonistas de Dopamina/efeitos adversos , Relação Dose-Resposta a Droga , Células HEK293 , Meia-Vida , Ensaios de Triagem em Larga Escala/métodos , Humanos , Células Madin Darby de Rim Canino , Masculino , Camundongos Endogâmicos , Neurônios/efeitos dos fármacos , Neurônios/metabolismo , Ratos , Receptores de Dopamina D1/metabolismo , Estereoisomerismo , Relação Estrutura-Atividade
11.
J Med Chem ; 61(7): 3008-3026, 2018 04 12.
Artigo em Inglês | MEDLINE | ID: mdl-29498843

RESUMO

Monoacylglycerol lipase (MAGL) inhibition provides a potential treatment approach to neuroinflammation through modulation of both the endocannabinoid pathway and arachidonoyl signaling in the central nervous system (CNS). Herein we report the discovery of compound 15 (PF-06795071), a potent and selective covalent MAGL inhibitor, featuring a novel trifluoromethyl glycol leaving group that confers significant physicochemical property improvements as compared with earlier inhibitor series with more lipophilic leaving groups. The design strategy focused on identifying an optimized leaving group that delivers MAGL potency, serine hydrolase selectivity, and CNS exposure while simultaneously reducing log  D, improving solubility, and minimizing chemical lability. Compound 15 achieves excellent CNS exposure, extended 2-AG elevation effect in vivo, and decreased brain inflammatory markers in response to an inflammatory challenge.


Assuntos
Anti-Inflamatórios não Esteroides/síntese química , Anti-Inflamatórios não Esteroides/farmacologia , Carbamatos/síntese química , Carbamatos/farmacologia , Inibidores Enzimáticos/síntese química , Inibidores Enzimáticos/farmacologia , Monoacilglicerol Lipases/antagonistas & inibidores , Neurite (Inflamação)/tratamento farmacológico , Amidoidrolases/antagonistas & inibidores , Animais , Ácidos Araquidônicos/metabolismo , Biomarcadores , Química Encefálica/efeitos dos fármacos , Cães , Desenho de Fármacos , Descoberta de Drogas , Endocanabinoides/metabolismo , Glicerídeos/metabolismo , Humanos , Macaca mulatta , Modelos Moleculares , Ratos , Ratos Wistar , Relação Estrutura-Atividade
12.
ACS Med Chem Lett ; 9(2): 68-72, 2018 Feb 08.
Artigo em Inglês | MEDLINE | ID: mdl-29456790

RESUMO

Late-stage oxidation using liver microsomes was applied to phosphodiesterase 2 inhibitor 1 to reduce its clearance by cytochrome P450 enzymes, introduce renal clearance, and minimize the risk for victim drug-drug interactions. This approach yielded PF-06815189 (2) with improved physicochemical properties and a mixed metabolic profile. This example highlights the importance of C-H diversification methods to drug discovery.

13.
J Med Chem ; 61(3): 1001-1018, 2018 02 08.
Artigo em Inglês | MEDLINE | ID: mdl-29293004

RESUMO

Computational modeling was used to direct the synthesis of analogs of previously reported phosphodiesterase 2A (PDE2A) inhibitor 1 with an imidazotriazine core to yield compounds of significantly enhanced potency. The analog PF-05180999 (30) was subsequently identified as a preclinical candidate targeting cognitive impairment associated with schizophrenia. Compound 30 demonstrated potent binding to PDE2A in brain tissue, dose responsive mouse brain cGMP increases, and reversal of N-methyl-d-aspartate (NMDA) antagonist-induced (MK-801, ketamine) effects in electrophysiology and working memory models in rats. Preclinical pharmacokinetics revealed unbound brain/unbound plasma levels approaching unity and good oral bioavailability resulting in an average concentration at steady state (Cav,ss) predicted human dose of 30 mg once daily (q.d.). Modeling of a modified release formulation suggested that 25 mg twice daily (b.i.d.) could maintain plasma levels of 30 at or above targeted efficacious plasma levels for 24 h, which became part of the human clinical plan.


Assuntos
Encéfalo/efeitos dos fármacos , Encéfalo/metabolismo , Nucleotídeo Cíclico Fosfodiesterase do Tipo 2/antagonistas & inibidores , Descoberta de Drogas , Inibidores Enzimáticos/metabolismo , Inibidores Enzimáticos/farmacologia , Animais , Disponibilidade Biológica , Encéfalo/fisiologia , Nucleotídeo Cíclico Fosfodiesterase do Tipo 2/química , Nucleotídeo Cíclico Fosfodiesterase do Tipo 2/metabolismo , Relação Dose-Resposta a Droga , Inibidores Enzimáticos/química , Inibidores Enzimáticos/farmacocinética , Humanos , Imidazóis/química , Imidazóis/metabolismo , Imidazóis/farmacocinética , Imidazóis/farmacologia , Concentração Inibidora 50 , Memória de Curto Prazo/efeitos dos fármacos , Simulação de Acoplamento Molecular , Conformação Proteica
14.
Science ; 359(6374): 429-434, 2018 Jan 26.
Artigo em Inglês | MEDLINE | ID: mdl-29371464

RESUMO

The scarcity of complex intermediates in pharmaceutical research motivates the pursuit of reaction optimization protocols on submilligram scales. We report here the development of an automated flow-based synthesis platform, designed from commercially available components, that integrates both rapid nanomole-scale reaction screening and micromole-scale synthesis into a single modular unit. This system was validated by exploring a diverse range of reaction variables in a Suzuki-Miyaura coupling on nanomole scale at elevated temperatures, generating liquid chromatography-mass spectrometry data points for 5760 reactions at a rate of >1500 reactions per 24 hours. Through multiple injections of the same segment, the system directly produced micromole quantities of desired material. The optimal conditions were also replicated in traditional flow and batch mode at 50- to 200-milligram scale to provide good to excellent yields.

15.
Org Lett ; 20(3): 812-815, 2018 02 02.
Artigo em Inglês | MEDLINE | ID: mdl-29327935

RESUMO

The design, synthesis, and application of [4-(acetylamino)phenyl]imidodisulfuryl difluoride (AISF), a shelf-stable, crystalline reagent for the synthesis of sulfur(VI) fluorides, is described. The utility of AISF is demonstrated in the synthesis of a diverse array of aryl fluorosulfates and sulfamoyl fluorides under mild conditions. Additionally, a single-step preparation of AISF was developed that installed the bis(fluorosulfonyl)imide group on acetanilide utilizing an oxidative C-H functionalization protocol.

16.
Org Lett ; 19(24): 6566-6569, 2017 12 15.
Artigo em Inglês | MEDLINE | ID: mdl-29182291

RESUMO

A mild Ru/Ni dual catalytic desulfinative photoredox Csp2-Csp3 cross-coupling reaction of alkyl sulfinate salts with aryl halides has been developed. The optimized catalyst system, consisting of Ru(bpy)3Cl2, Ni(COD)2, and DBU, smoothly mediates the coupling of a diverse set of secondary and primary nonactivated alkyl sulfinate salts with a broad range of electron-deficient aryl bromides, electron-rich aryl iodides, and heteroaryl bromides under irradiation with blue light. The procedure is ideal for late-stage introduction of alkyl groups on pharmaceutical intermediates, and the Csp2-Csp3 cross-coupling reaction allowed the rapid synthesis of caseine kinase 1δ inhibitor analogues via a parallel medicinal chemistry effort.

17.
ACS Comb Sci ; 19(11): 675-680, 2017 11 13.
Artigo em Inglês | MEDLINE | ID: mdl-28985050

RESUMO

A novel parallel medicinal chemistry (PMC)-enabled synthesis of 1H-pyrazolo[3,4-d]pyrimidines employing condensation of easily accessible N-pyrazolylamides and nitriles has been developed. The presented studies describe singleton and library enablements that allowed rapid generation of molecular diversity to examine C4 and C6 vectors. This chemistry enabled access to challenging alkyl substituents, expanding the overall chemical space beyond that available via typical C(sp2)-C(sp2) coupling and SNAr transformations. Furthermore, monomer group interconversions allowing the use of larger and more diverse amides and carboxylic acids as precursors to nitriles are discussed.


Assuntos
Amidas/química , Nitrilas/química , Pirazóis/química , Pirimidinas/química , Química Farmacêutica , Portadores de Fármacos , Humanos , Tamanho da Partícula , Pirazóis/síntese química , Pirimidinas/síntese química , Propriedades de Superfície
18.
J Med Chem ; 60(20): 8538-8551, 2017 10 26.
Artigo em Inglês | MEDLINE | ID: mdl-28957634

RESUMO

As part of our effort in identifying phosphodiesterase (PDE) 4B-preferring inhibitors for the treatment of central nervous system (CNS) disorders, we sought to identify a positron emission tomography (PET) ligand to enable target occupancy measurement in vivo. Through a systematic and cost-effective PET discovery process, involving expression level (Bmax) and biodistribution determination, a PET-specific structure-activity relationship (SAR) effort, and specific binding assessment using a LC-MS/MS "cold tracer" method, we have identified 8 (PF-06445974) as a promising PET lead. Compound 8 has exquisite potency at PDE4B, good selectivity over PDE4D, excellent brain permeability, and a high level of specific binding in the "cold tracer" study. In subsequent non-human primate (NHP) PET imaging studies, [18F]8 showed rapid brain uptake and high target specificity, indicating that [18F]8 is a promising PDE4B-preferring radioligand for clinical PET imaging.


Assuntos
Nucleotídeo Cíclico Fosfodiesterase do Tipo 4/metabolismo , Inibidores de Fosfodiesterase/metabolismo , Tomografia por Emissão de Pósitrons/métodos , Animais , Córtex Cerebral/metabolismo , Cromatografia Líquida , Descoberta de Drogas , Macaca fascicularis , Ensaio Radioligante , Relação Estrutura-Atividade , Espectrometria de Massas em Tandem
19.
J Med Chem ; 60(13): 5673-5698, 2017 07 13.
Artigo em Inglês | MEDLINE | ID: mdl-28574706

RESUMO

Phosphodiesterase 2A (PDE2A) inhibitors have been reported to demonstrate in vivo activity in preclinical models of cognition. To more fully explore the biology of PDE2A inhibition, we sought to identify potent PDE2A inhibitors with improved brain penetration as compared to current literature compounds. Applying estimated human dose calculations while simultaneously leveraging synthetically enabled chemistry and structure-based drug design has resulted in a highly potent, selective, brain penetrant compound 71 (PF-05085727) that effects in vivo biochemical changes commensurate with PDE2A inhibition along with behavioral and electrophysiological reversal of the effects of NMDA antagonists in rodents. This data supports the ability of PDE2A inhibitors to potentiate NMDA signaling and their further development for clinical cognition indications.


Assuntos
Nucleotídeo Cíclico Fosfodiesterase do Tipo 2/antagonistas & inibidores , Desenho de Fármacos , Inibidores de Fosfodiesterase/química , Inibidores de Fosfodiesterase/farmacologia , Animais , Encéfalo/efeitos dos fármacos , Encéfalo/metabolismo , Cristalografia por Raios X , Nucleotídeo Cíclico Fosfodiesterase do Tipo 2/química , Nucleotídeo Cíclico Fosfodiesterase do Tipo 2/metabolismo , Cães , Haplorrinos , Humanos , Camundongos , Simulação de Acoplamento Molecular , Inibidores de Fosfodiesterase/administração & dosagem , Inibidores de Fosfodiesterase/farmacocinética , Ratos
20.
Medchemcomm ; 8(4): 730-743, 2017 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-30108792

RESUMO

Herein we describe the discovery of a novel series of cyclopropyl chromane-derived pyridopyrazine-1,6-dione γ-secretase modulators for the treatment of Alzheimer's disease (AD). Using ligand-based design tactics such as conformational analysis and molecular modeling, a cyclopropyl chromane unit was identified as a suitable heterocyclic replacement for a naphthyl moiety that was present in the preliminary lead 4. The optimized lead molecule 44 achieved good central exposure resulting in robust and sustained reduction of brain amyloid-ß42 (Aß42) when dosed orally at 10 mg kg-1 in a rat time-course study. Application of the unpaced isolated heart Langendorff model enabled efficient differentiation of compounds with respect to cardiovascular safety, highlighting how minor structural changes can greatly impact the safety profile within a series of compounds.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...